
EFFICIENT LANGUAGE MODEL LOOK-AHEAD PROBABILITIES GENERATION USING
LOWER ORDER LM LOOK-AHEAD INFORMATION

Langzhou Chen and K. K. Chin

Toshiba Research Europe Limited, Cambridge Research Lab, Cambridge, UK
{langzhou.chen,kkchin }@crl.toshiba.co.uk

ABSTRACT

In this paper, an efficient method for language model look-
ahead probability generation is presented. Traditional
methods generate language model look-ahead (LMLA)
probabilities for each node in the LMLA tree recursively in
a bottom to up manner. The new method presented in this
paper makes use of the sparseness of the n-gram model and
starts the process of generating an n-gram LMLA tree from a
backoff LMLA tree. Only a small number of nodes are
updated with explicitly estimated LM probabilities. This
speeds up the bigram and trigram LMLA tree generation by
a factor of 3 and 12 respectively.

Index: language model, Speech Recognition, decoding

1. INTRODUCTION

Language model look-ahead (LMLA) can accelerate the
n-gram decoding process [1]. The basic idea of LMLA is to
use look-ahead probabilities as linguistic scores when the
current word is unknown. This leads to more efficient
pruning in the decoding process, as the linguistic score is
used before the end of the word is detected. Using a higher
order LMLA will generally improve pruning efficiency
because of the use of a more accurate linguistic score.
However, due to the high calculation cost of generating the
LMLA probabilities using a LMLA beyond bigram poses
some difficulty. When a high order LMLA, for example
trigram LMLA is adopted, the number of different trigram
contexts that occur in the search space increases
dramatically compared to the number of bigram contexts. As
a result, the cost of generating trigram LMLA trees
outweighs the benefit of more efficient pruning. Various
method have been proposed to overcome this problem,
including node based LMLA probability cache, pre-
calculating the LM probabilities and perfect hashing [2].
Most of these methods focus on how to cache and look up
the LMLA probabilities efficiently. However, generating the
LMLA probability itself is still a very time consuming
process. This paper focuses on efficient LMLA probability
generation. A new method to generate the higher order
LMLA probabilities from the lower order LMLA trees is

presented. The method takes advantage of the sparseness of
the n-gram LM to avoid unnecessary computation. In a
backoff based LM, given the word context information, only
a small part of n-gram probabilities are estimated explicitly,
while the rest are backoff estimates. This fact lead to the
development of a LMLA probabilities generation algorithm
that achieves its goal by updating a (n-1)-gram LMLA tree.
Only nodes that are related to explicitly estimated n-gram
value are updated, the rest of the nodes are backoff of the
corresponding nodes in the (n-1)-gram LMLA tree. A
trigram LMLA system based on this new algorithm has been
implemented in the Toshiba LVCSR system and results in
significant CPU cost reduction.

The rest of this paper is organized as follows: in section
2, the calculation cost of the LMLA is analyzed, in section 3,
a new efficient method for calculating the LMLA probability
is introduced. A multi-layer cache structure to construct the
trigram LMLA is presented in section 4. Finally,
experimental results and conclusion are presented.

2. THE COMPUTATION COST OF LMLA

During the decoding process, the LM look-ahead
probabilities have to be generated on-line. Therefore, the
efficiency of calculating the LMLA probabilities has a direct
impact on the speed of decoding. In the traditional method a
dynamic programming process is used to calculate the LM
look-ahead probabilities.

 Given a particular LM context, the calculation of LM
look-ahead probabilities can be divided into 2 parts. The
first part calculates the LM probabilities of every word in
the vocabulary based on the LM context. The second part
involves assigning LM look-ahead probability to every node
in the LM look-ahead network through a dynamic
programming procedure. Supposing that the vocabulary
contains V words and the LM look-ahead network contains
M nodes. This means that for each LM history occurring in
the search space, the LVCSR system has to look up V
probabilities in step 1 and generate M look-ahead
probabilities in step 2. Figure 1 shows the calculation of
LMLA probability based on this method.

The values of V and M are quite big in LVCSR system.
Typically during the recognition process of one sentence,

49251-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

there are several hundred bigram contexts and several
thousand trigram contexts occurring in the search space. For
the higher order n gram, for example, four gram, the number
of LM contexts in the search space is even bigger. For every
LM context, the LM probability calculation mentioned
above has to be carried out. Calculating LM look-ahead
probabilities can take up significant CPU time.

Figure 1 generating LMLA probability based on traditional method

3. THE NEW METHOD OF EFFICIENT LMLA
PROBABILITY GENERATION

The traditional method treats the calculation of the LM
probabilities and the LMLA probabilities as two
independent processes. However, the calculation of LMLA
probabilities is strongly related to the calculation of the LM
probabilities. Making use of this relationship can results in
significant CPU cost reduction.

3.1. The data sparseness of n-gram model

The n-gram language model uses the most recent n-1 history
word to predict the probability of the current word. The
backoff based n-gram LM can be expressed as:

otherwisehBackoffhwf

whCifhwf
hwP

)(*)'|(

)0),(()|(
)|((1)

where f(.) is the discounted LM probability read from n-
gram file, C(.) is the frequency of the event occurring in
training corpus, Backoff(h) is the backoff parameters of
history h, and h’ represents the lower order history of h.
Eqn 1 indicates that when the history-word pair can not be
found in the n-gram data, the lower order model is used as
the back-off estimate. Practically speaking, for large
vocabulary applications, given a history h, the number of
different history-word pairs that can be found in the training
data is much smaller than the size of the vocabulary V.
This means that for every word history h, most of the n-
gram probabilities are given by the back-off estimate. This

phenomenon can be used to accelerate the calculation in
language modeling. For example, in [3], it is used for
efficiently calculating the relative entropy when n-gram
parameter is pruned. In [4], it is used to calculate the
normalization parameters for MDI estimation. In this paper,
it is used for efficient LMLA probabilities generation.

3.2. Calculating the LMLA probabilities from lower
order LMLA information
.
The method presented in this paper uses the low-order LM
look-ahead information to reduce the calculation cost of the
higher order LM look-ahead. In this new method, only the
LM look-ahead probabilities in a small subset of the nodes
need to be updated, while for most of the nodes in the LM
look-ahead tree, their LM look-ahead probability can be
copied directly from the backoff LM look-ahead tree. The
definition of the LM look-ahead in node n is the maximum
LM probability over all the words that can be reached from
n, which can be expressed as:

()
(|) max P(|)

w W n
n h w h (2)

where W(n) represents the set of the words that can be
reached from node n. According to Eqn2, the definition of
LM look-ahead can be re-written as:

1 2(|) max{ (|), (|)}n h n h n h (3)

where

1 ()&& (,) 0
(|) max (|)

w W n C w h
n h f w h (4)

and

2 ()&& (,) 0
(|) max (| ')* ()

w W n C w h
n h f w h backoff h (5)

Therefore, the nodes in the LMLA tree can be divided into 2
parts, i.e.

1 2

1 1

2 2

{ | (|) (|)}
{ | (|) (|)}

N N N
N n n h n h
N n n h n h

 (6)

Given a word history h, only the LMLA probabilities which
are related to N1 need to be calculated using the explicit n-
gram estimates, while the rest of LMLA probabilities which
are related to N2 are calculated using backoff estimates.
Based on the analysis given above, a new method for
calculating the LMLA probability is presented. The new
method can be divided into 4 steps.

Step 1: generating a lower order LM look-ahead network,
T, for each node n in T

Pr(w1|h)

Pr(w2|h)

Pr(w3|h)

Pr(w4|h)

Pr(w5|h)

Pr(w6|h)

Pr(w7|h)

Pr(w8|h)

4926

()
(| ') max Pr(| ')

w W n
n h w h (7)

Step 2: multiplying lower order LM look-ahead
probabilities by the backoff parameters of history h, to
generate a backoff LM look-ahead network tree, T’, for
each node n in T’

)'|Pr(max)()|('
)(

hwhbackoffhn
nWw

 (8)

Step 3: for each word w that co-occurred with the LM
context h in the training corpus, replace the backoff LM
probability in the leaf nodes of T’ with the explicit LM
probabilities in n-gram model, i.e. if C(h,w)>0, using f(w|h)
to replace f(w|h’)*backoff(h) in T’.

Step 4: for each word w in W={w|C(h,w)>0}, update the
LM look-ahead probabilities in the node from which the w
can be reached, using the dynamic programming procedure.

Figure 2 generating the LMLA probability using the new method

Figure 2 shows the calculation of LMLA probabilities based
on the new method. The new method to calculate the LMLA
probabilities starts from a backoff LMLA tree. The LMLA
tree in Figure 2 contains 8 leaves, i.e. 8 individual words.
Given the LM context h, supposing that only 2 words: w1
and w3, have explicit LM probabilities, the new method only
needs to calculate the LMLA probabilities in the nodes from
which the w1 and w3, can be reached, i.e. the black nodes in
Figure 2, while the rest of the LMLA probabilities, i.e. the
LMLA probabilities in the grey nodes, can be copied from
the backoff LMLA tree directly. The proposed method
reduces the CPU cost significantly by calculating only a
subset of nodes in the LM look-ahead tree, i.e. the nodes
belong to N1 in Eqn 6, instead of updating every node like
the old method. For a particular LM context h, the word set
W={w|C(h,w)>0} is much smaller than the whole
recognition vocabulary. Nodes in N1 are only a subset of
nodes in LMLA tree.

4. MULTI-LAYER CACHE SYSTEM FOR LMLA

In the proposed method, the calculation of higher order
LMLA probability depends on the value of the lower order
LMLA probabilities, a multi-layer cache structure facilitates
the generation of a high order LMLA. The number of the of
layers is the same as the order of LMLA adopted by the
decoder. There is a cache for the LMLA probabilities of
each order. If a requested LMLA tree does not exist in the
cache, it is generated using the corresponding backoff tree
from low order LMLA cache.

Figure 3 trigram LMLA based on multi-layer cache structure

Figure 3 shows the framework of trigram LMLA based on
the multi-layer cache. Based on this structure, trigram
LMLA can be divided into 5 steps:
Step 1: the decoder requests the LMLA score for node n and
word history wjwi from the LMLA scoring module. The
LMLA scoring module checks if the requested LMLA
probability is already in the trigram LMLA cache, if it is,
then go to step 5, otherwise, go to step 2.
Step 2: the bigram word history wi is used to look-up the
bigram LMLA cache, if the LMLA buffer for wi is already in
the cache, go to step 4, otherwise go to step 3.
Step 3: using the unigram LMLA buffer, the bigram LMLA
buffer for wi is generated and cached.
Step 4: using the bigram LMLA buffer for wi, the trigram
LMLA buffer for wjwi is generated and cached.
Step 5: the requested LMLA probability is returned to the
decoder.

5. EXPERIMENTAL RESULTS

The experiments of trigram LMLA in this paper is based on
the WSJ 20k vocabulary system. The training speech is
WSJ0 and WSJ1 corpus, SI284 training set. The vocabulary
is a closed vocabulary with about 20k words provided by
Linguistic Data Consortium (LDC). The acoustic model
contains 6000 tied HMM states with 10 Gaussian mixture

Decoder

Step1:n,
wjwi

Step5:
LMLA
for wjwi
&n Step2: wi

 Step4:
 LML

for wi

Step3:Unigram LML

LMLA scoring

w1

…

wi

w1w2

…

wjwi
Unigram LMLA
cache

Bigram LMLA
cache Trigram LMLA

cache

The backoff LMLA
tree, For every node,
the LML probability is
Backoff(h)* (n|h’)

The object
LMLA tree

f(w1|h)

f(w3|h)

4927

components per state. The speech vector is 33 dimensional
with 10 proprietory cepstral features, 1 LOG energy, and
their first-order and second-order time derivatives. The LM
is a trigram language model trained by WSJ87-89 text
corpus with about 40M words.

Configuration of LMLA Decoding

cost (MIPS)

CPU cost for

LMLA

Taditional bigram LMLA 6054 25.8%

Bigram LMLA with new method 5328 7.5%

Traditional trigram LMLA 9589 65.8%

Trigram LMLA with new method 5280 10.0%

Table 1 The CPU cost comparison for LMLA between traditional
method and the new method.

Table 1 shows the CPU cost of LMLA with different
configuration based on the same beam width. It can be seen
that the method proposed in this paper greatly reduced the
calculation cost of LMLA probabilities. The process of
generating the bigram and trigram LMLA tree is accelerated
by a factor of 3 and 12 respectively. When trigram LMLA is
used, the number of different trigram contexts occurring in
the search space is much more than the number of bigram
context. In the old method, the benefit of trigram LMLA can
not compensate the extra calculation brought by LMLA and
the system is even slower than the bigram LMLA system. On
the other hand, because the new method calculates the
LMLA probability much faster than traditional method,
trigram LMLA speed-up the system further compared to the
bigram LMLA, when the new method is used.

Table 2 shows the performance of the trigram LMLA
and the bigram LMLA based on the new method. To achieve
the same WER, the decoding based on trigram LMLA is
always faster than the decoding with bigram LMLA.
Trigram is more efficient in fast decoding, when the Beam
width is 160, the WER of trigram LMLA is 1% better than
bigram LMLA, when the beam width increased to 200, the
difference reduces to 0.3%.

As mentioned in section 4, trigram LMLA in the new
method is based on a multi-cache structure in which the
trigram LMLA probabilities is generated from bigram
LMLA probabilities and the bigram LMLA probabilities is
generated from unigram LMLA probabilities. Table 3 shows
the calculation quantities of different order of LMLA based
on one of test utterance in WSJ 20k task. It can be seen that
even there are three times more trigram LMLA trees
generated, it only occupies 1.26% CPU cost, while the
bigram LMLA occupies 7.63% CPU cost. This is mainly
due to the sparseness of the trigram data. Because the
trigram data is very sparse compared to bigram data, the
nodes to be updated in trigram LMLA are much less than
those in bigram LMLA. Therefore, most of the calculation
cost is from bigram LMLA even it is called less frequently.

Bigram LMLA Trigram LMLABeam width

MIPS WER MIPS WER

160 2490 13.9% 2476 12.9%

170 2975 11.4% 2959 11.0%

180 3604 10.2% 3572 9.9%

190 4378 9.5% 4329 9.0%

200 5328 9.2% 5280 8.9%

Table 2 The comparison results of trigram LMLA and bigram
LMLA based on new method

of LMLA trees be

generated

The CPU cost for LMLA

Bigram LMLA 322 7.63%

Trigram LMLA 1247 1.26%

Table 3. calculation quantity of different orders of LMLA based on
new method

6. CONCLUSIOTN

In this paper, an efficient method to speed-up the calculation
of the LMLA is presented. Contrary to the traditional
method which treats the LM scoring in the leaves of LMLA
tree and the LMLA probabilities propagation in the nodes as
two independent processes, the new algorithm makes use of
the sparseness of the n-gram data and calculates the higher
order LMLA probabilities from the lower order LMLA
probabilities. The method proposed in this paper is
significantly faster than the traditional method. When a high
order LMLA, such as trigram LMLA is adopted, the extra
calculation cost is tiny compared to the bigram LMLA.

7. REFERENCES

[1] S. Ortmanns, H. Ney, and N. Coenen, “Language model Look-
ahead for large vocabulary speech recognition,” In Proceedings of
ICSLP, Piladelphia, USA, pp. 2095-2098, 1996.

[2] A. Cardenal-Lepez, F.J. Dieguez-Tirado and C. Garcia-Mateo,
“Fast LM look-ahead for large vocabulary continuous speech
recognition using perfect hashing,” In Proceedings of ICASSP,
Orlando, USA, pp. I-705-I-708, 2002

[3] A. Stolcke, “Entropy-based Pruning of Backoff
Language models,” In Proceedings of DARPA broadcast
news transcription and understanding workshop,
Lansdowne, pp 270-274, 1998

[4] M. Federico, “Efficient Language Model Adaptation
through MDI Estimation,” In Proceedings of
EUROSPEECH, Budapest, pp. 1583-1586, 1999.

4928

