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ABSTRACT

In this paper, an efficient method for language model look-
ahead probability generation is presented. Traditional 
methods generate language model look-ahead (LMLA)
probabilities for each node in the LMLA tree recursively in 
a bottom to up manner. The new method presented in this 
paper makes use of the sparseness of the n-gram model and
starts the process of generating an n-gram LMLA tree from a 
backoff LMLA tree. Only a small number of nodes are
updated with explicitly estimated LM probabilities. This
speeds up the bigram and trigram LMLA tree generation by 
a factor of 3 and 12 respectively.

Index: language model, Speech Recognition, decoding

1. INTRODUCTION

Language model look-ahead (LMLA) can accelerate the 
n-gram decoding process [1]. The basic idea of LMLA is to 
use look-ahead probabilities as linguistic scores when the 
current word is unknown. This leads to more efficient 
pruning in the decoding process, as the linguistic score is 
used before the end of the word is detected. Using a higher 
order LMLA will generally improve pruning efficiency 
because of the use of a more accurate linguistic score. 
However, due to the high calculation cost of generating the 
LMLA probabilities using a LMLA beyond bigram poses 
some difficulty. When a high order LMLA, for example
trigram LMLA is adopted, the number of different trigram 
contexts that occur in the search space increases
dramatically compared to the number of bigram contexts. As 
a result, the cost of generating trigram LMLA trees
outweighs the benefit of more efficient pruning. Various 
method have been proposed to overcome this problem, 
including node based LMLA probability cache, pre-
calculating the LM probabilities and perfect hashing [2]. 
Most of these methods focus on how to cache and look up 
the LMLA probabilities efficiently. However, generating the 
LMLA probability itself is still a very time consuming 
process. This paper focuses on efficient  LMLA probability
generation. A new method to generate the higher order 
LMLA probabilities from the lower order LMLA trees is 

presented. The method takes advantage of the sparseness of 
the n-gram LM to avoid unnecessary computation. In a 
backoff based LM, given the word context information, only 
a small part of n-gram probabilities are estimated explicitly, 
while the rest are backoff estimates. This fact lead to the 
development of a LMLA probabilities generation algorithm 
that achieves its goal by updating a (n-1)-gram LMLA tree. 
Only nodes that are related to explicitly estimated n-gram 
value are updated, the rest of the nodes are backoff of the 
corresponding nodes in the (n-1)-gram LMLA tree. A 
trigram LMLA system based on this new algorithm has been 
implemented in the Toshiba LVCSR system and results in 
significant CPU cost reduction.

The rest of this paper is organized as follows: in section 
2, the calculation cost of the LMLA is analyzed, in section 3, 
a new efficient method for calculating the LMLA probability 
is introduced. A multi-layer cache structure to construct the 
trigram LMLA is presented in section 4. Finally,
experimental results and conclusion are presented.

2. THE COMPUTATION COST OF LMLA

During the decoding process, the LM look-ahead 
probabilities have to be generated on-line. Therefore, the 
efficiency of calculating the LMLA probabilities has a direct 
impact on the speed of decoding. In the traditional method a 
dynamic programming process is used to calculate the LM 
look-ahead probabilities.

 Given a particular LM context, the calculation of LM 
look-ahead probabilities can be divided into 2 parts. The 
first part calculates the LM probabilities of every word in 
the vocabulary based on the LM context. The second part 
involves assigning LM look-ahead probability to every node 
in the LM look-ahead network through a dynamic 
programming procedure. Supposing that the vocabulary 
contains V words and the LM look-ahead network contains 
M nodes. This means that for each LM history occurring in 
the search space, the LVCSR system has to look up V 
probabilities in step 1 and generate M look-ahead 
probabilities in step 2. Figure 1 shows the calculation of 
LMLA probability based on this method.

The values of V and M are quite big in LVCSR system. 
Typically during the recognition process of one sentence, 

49251-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



there are several hundred bigram contexts and several 
thousand trigram contexts occurring in the search space. For 
the higher order n gram, for example, four gram, the number 
of LM contexts in the search space is even bigger. For every 
LM context, the LM probability calculation mentioned 
above has to be carried out. Calculating LM look-ahead 
probabilities can take up significant CPU time.

Figure 1 generating LMLA probability based on traditional method

3. THE NEW METHOD OF EFFICIENT LMLA
PROBABILITY GENERATION

The traditional method treats the calculation of the LM 
probabilities and the LMLA probabilities as two 
independent processes. However, the calculation of LMLA
probabilities is strongly related to the calculation of the LM 
probabilities. Making use of this relationship can results in 
significant CPU cost reduction.

3.1. The data sparseness of n-gram model

The n-gram language model uses the most recent n-1 history 
word to predict the probability of the current word. The 
backoff based n-gram LM can be expressed as:
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where f(.) is the discounted LM probability read from n-
gram file, C(.) is the frequency of the event occurring in 
training corpus, Backoff(h) is the backoff parameters of 
history h, and h’ represents the lower order history of h.
Eqn 1 indicates that when the history-word pair can not be 
found in the n-gram data, the lower order model is used as 
the back-off  estimate. Practically speaking, for large 
vocabulary applications, given a history h, the number of 
different history-word pairs that can be found in the training 
data is much smaller than the size of the vocabulary V.
This means that for every word history h, most of the n-
gram probabilities are given by the back-off estimate. This 

phenomenon can be used to accelerate the calculation in 
language modeling. For example, in [3], it is used for
efficiently calculating the relative entropy when n-gram 
parameter is pruned. In [4], it is used to calculate the 
normalization parameters for MDI estimation. In this paper, 
it is used for efficient LMLA probabilities generation.

3.2. Calculating the LMLA probabilities from lower 
order LMLA information
.
The method presented in this paper uses the low-order LM 
look-ahead information to reduce the calculation cost of the 
higher order LM look-ahead. In this new method, only the 
LM look-ahead probabilities in a small subset of the nodes 
need to be updated, while for most of the nodes in the LM
look-ahead tree, their LM look-ahead probability can be 
copied directly from the backoff LM look-ahead tree. The 
definition of the LM look-ahead in node n is the maximum 
LM probability over all the words that can be reached from 
n, which can be expressed as:

( )
( | ) max P( | )
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where W(n) represents the set of the words that can be 
reached from node n. According to Eqn2, the definition of 
LM look-ahead can be re-written as:
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Therefore, the nodes in the LMLA tree can be divided into 2 
parts, i.e.
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Given a word history h, only the LMLA probabilities which 
are related to N1 need to be calculated using the explicit n-
gram estimates, while the rest of LMLA probabilities which 
are related to N2 are calculated using backoff estimates.
Based on the analysis given above, a new method for 
calculating the LMLA probability is presented. The new 
method can be divided into 4 steps.

Step 1: generating a lower order LM look-ahead network, 
T, for each node n in T

Pr(w1|h)

Pr(w2|h)

Pr(w3|h)

Pr(w4|h)

Pr(w5|h)

Pr(w6|h)

Pr(w7|h)

Pr(w8|h)
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Step 2: multiplying lower order LM look-ahead 
probabilities by the backoff parameters of history h, to 
generate a backoff LM look-ahead network tree, T’, for 
each node n in T’
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    (8)

Step 3: for each word w that co-occurred with the LM 
context h in the training corpus, replace the backoff LM 
probability in the leaf nodes of T’ with the explicit LM 
probabilities in n-gram model, i.e. if C(h,w)>0, using f(w|h)
to replace f(w|h’)*backoff(h) in T’.

Step 4: for each word w in W={w|C(h,w)>0}, update the 
LM look-ahead probabilities in the node from which the w
can be reached, using the dynamic programming procedure.

Figure 2 generating the LMLA probability using the new method

Figure 2 shows the calculation of LMLA probabilities based 
on the new method. The new method to calculate the LMLA
probabilities starts from a backoff LMLA tree. The LMLA
tree in Figure 2 contains 8 leaves, i.e. 8 individual words. 
Given the LM context h, supposing that only 2 words: w1
and w3, have explicit LM probabilities, the new method only 
needs to calculate the LMLA probabilities in the nodes from 
which the w1 and w3, can be reached, i.e. the black nodes in 
Figure 2, while the rest of the LMLA probabilities, i.e. the 
LMLA probabilities in the grey nodes, can be copied from 
the backoff LMLA tree directly. The proposed method 
reduces the CPU cost significantly by calculating only a 
subset of nodes in the LM look-ahead tree, i.e. the nodes 
belong to N1 in Eqn 6, instead of updating every node like 
the old method. For a particular LM context h, the word set 
W={w|C(h,w)>0} is much smaller than the whole 
recognition vocabulary. Nodes in N1 are only a subset of 
nodes in LMLA tree.

4. MULTI-LAYER CACHE SYSTEM FOR LMLA

In the proposed method, the calculation of higher order 
LMLA probability depends on the value of the lower order 
LMLA probabilities, a multi-layer cache structure facilitates 
the generation of a high order LMLA. The number of the of 
layers is the same as the order of LMLA adopted by the 
decoder. There is a cache for the LMLA probabilities of 
each order. If a requested LMLA tree does not exist in the 
cache, it is generated using the corresponding backoff tree 
from low order LMLA cache.

Figure 3 trigram LMLA based on multi-layer cache structure

Figure 3 shows the framework of trigram LMLA based on 
the multi-layer cache. Based on this structure, trigram 
LMLA can be divided into 5 steps:
Step 1: the decoder requests the LMLA score for node n and 
word history wjwi from the LMLA scoring module. The 
LMLA scoring module checks if the requested LMLA
probability is already in the trigram LMLA cache, if it is, 
then go to step 5, otherwise, go to step 2. 
Step 2: the bigram word history wi is used to look-up the 
bigram LMLA cache, if the LMLA buffer for wi is already in 
the cache, go to step 4, otherwise go to step 3.
Step 3: using the unigram LMLA buffer, the bigram LMLA
buffer for wi is generated and cached. 
Step 4: using the bigram LMLA buffer for wi, the trigram 
LMLA buffer for wjwi is generated and cached. 
Step 5: the requested LMLA probability is returned to the 
decoder.

5. EXPERIMENTAL RESULTS

The experiments of trigram LMLA in this paper is based on 
the WSJ 20k vocabulary system. The training speech is
WSJ0 and WSJ1 corpus, SI284 training set. The vocabulary 
is a closed vocabulary with about 20k words provided by 
Linguistic Data Consortium (LDC).  The acoustic model 
contains 6000 tied HMM states with 10 Gaussian mixture 
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components per state. The speech vector is 33 dimensional 
with 10 proprietory cepstral features, 1 LOG energy, and 
their first-order and second-order time derivatives. The LM 
is a trigram language model trained by WSJ87-89 text 
corpus with about 40M words.

Configuration of LMLA Decoding

cost (MIPS)

CPU cost for 

LMLA

Taditional bigram LMLA 6054 25.8%

Bigram LMLA with new method 5328 7.5%

Traditional trigram LMLA 9589 65.8%

Trigram LMLA with new method 5280 10.0%

Table 1 The CPU cost comparison for LMLA between traditional 
method and the new method.

Table 1 shows the CPU cost of LMLA with different 
configuration based on the same beam width. It can be seen 
that the method proposed in this paper greatly reduced the 
calculation cost of LMLA probabilities. The process of  
generating the bigram and trigram LMLA tree is accelerated 
by a factor of 3 and 12 respectively. When trigram LMLA is 
used, the number of different trigram contexts occurring in 
the search space is much more than the number of bigram 
context. In the old method, the benefit of trigram LMLA can 
not compensate the extra calculation brought by LMLA and 
the system is even slower than the bigram LMLA system. On 
the other hand, because the new method calculates the 
LMLA probability much faster than traditional method, 
trigram LMLA speed-up the system further compared to the 
bigram LMLA, when the new method is used.

Table 2 shows the performance of the trigram LMLA
and the bigram LMLA based on the new method. To achieve 
the same WER, the decoding based on trigram LMLA is 
always faster than the decoding with bigram LMLA. 
Trigram is more efficient in fast decoding, when the Beam 
width is 160, the WER of trigram LMLA is 1% better than 
bigram LMLA, when the beam width increased to 200, the 
difference reduces to 0.3%.

As mentioned in section 4, trigram LMLA in the new 
method is based on a multi-cache structure in which the 
trigram LMLA probabilities is generated from bigram 
LMLA probabilities and the bigram LMLA probabilities is 
generated from unigram LMLA probabilities. Table 3 shows 
the calculation quantities of different order of LMLA based 
on one of test utterance in WSJ 20k task. It can be seen that 
even there are three times more trigram LMLA trees
generated, it only occupies 1.26% CPU cost, while the 
bigram LMLA occupies 7.63% CPU cost. This is mainly 
due to the sparseness of the trigram data. Because the 
trigram data is very sparse compared to bigram data, the 
nodes to be updated in trigram LMLA are much less than 
those in bigram LMLA. Therefore, most of the calculation 
cost is from bigram LMLA even it is called less frequently.

Bigram LMLA Trigram LMLABeam width

MIPS WER MIPS WER

160 2490 13.9% 2476 12.9%

170 2975 11.4% 2959 11.0%

180 3604 10.2% 3572 9.9%

190 4378 9.5% 4329 9.0%

200 5328 9.2% 5280 8.9%

Table 2 The comparison results of trigram LMLA and bigram 
LMLA based on new method

# of LMLA trees be 

generated 

The CPU cost for LMLA

Bigram LMLA 322 7.63%

Trigram LMLA 1247 1.26%

Table 3. calculation quantity of different orders of LMLA based on
new method

6. CONCLUSIOTN

In this paper, an efficient method to speed-up the calculation 
of the LMLA is presented. Contrary to the traditional 
method which treats the LM scoring in the leaves of LMLA
tree and the LMLA probabilities propagation in the nodes as 
two independent processes, the new algorithm makes use of 
the sparseness of the n-gram data and calculates the higher 
order LMLA probabilities from the lower order LMLA
probabilities. The method proposed in this paper is 
significantly faster than the traditional method. When a high 
order LMLA, such as trigram LMLA is adopted, the extra 
calculation cost is tiny compared to the bigram LMLA.
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